Coral Reef Metabolism OverviewTeamPublicationsLatest News Coral reefs are going through unprecedented declines around the world due to human activity, both on global and local scales. Net Photosynthesis and calcification, commonly referred to as coral reef metabolism, are fundamentally important to measure coral reef function and health, as photosynthesis provides energy for the ecosystem, and calcification builds the three dimensional structure that provides habitat for the organisms. Historically, these measurements in the natural world have been made by collecting samples from the field and analyzing them in the laboratory through time and labor consuming instruments. As a result, it is still not well known how coral reef metabolism has been affected, and how it will change moving into the future. Our group develops and utilizes two autonomous systems that can measure coral reef metabolism for weeks to months at a time: a dual pH-O2 Eddy Covariance system, and the Benthic Ecosystem and Acidification Measurement System (BEAMS). Both systems make measurements near the seafloor, and use turbulence theory to calculate coral reef metabolism. We have deployed these systems worldwide, and are working to establish long term monitoring sites Lizard Island coral reef experiments, 2018. Team Directory Yui Takeshita Scientist Principal Investigator Joseph Warren Senior Research Technician Irene Hu Electrical Engineer Publications All Publications Platz, M.C., Y. Takeshita, E. Bartels, and M.E. Arias. 2020. Evaluating the potential for autonomous measurements of net community production and calcification as a tool for monitoring coral restoration. Ecological Engineering, 158: 1–10. https://doi.org/10.1016/j.ecoleng.2020.106042 Koweek, D.A., A. Forde, R. Albright, Y. Takeshita, D.A. Mucciarone, A. Ninokawa, and K. Caldeira. 2019. Carbon isotopic fractionation in organic matter production consistent with benthic community composition across a coral reef flat. Frontiers in Marine Science, 5: 1–14. https://doi.org/10.3389/fmars.2018.00520 Cyronak, T., Y. Takeshita, T.A. Courtney, E.H. DeCarlo, B.D. Eyre, D.I. Kline, T. Martz, H. Page, N.N. Price, J. Smith, L. Stoltenberg, M. Tresguerres, and A.J. Andersson. 2020. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnology and Oceanography Letters, 5(2): 193–203. https://doi.org/10.1002/lol2.10129 Silveira, C.B., A. Luque, T.N. Roach, H. Villela, A. Barno, K. Green, B. Reyes, E. Rubio-Portillo, S. Mead, M. Hatay, M.J. Vermeij, Y. Takeshita, A. Haas, B. Bailey, and F. Rohwer. 2019. Biophysical and physiological processes causing oxygen loss from coral reefs. Elife, 8(e49114): 1–24. https://doi.org/10.7554/eLife.49114 Fox, M.D., A.L. Carter, C.B. Edwards, Y. Takeshita, M.D. Johnson, V. Petrovic, C.G. Amier, E. Sala, S.A. Sandin, and J.E. Smith. 2019. Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs, 38: 701–712. https://doi.org/10.1007/s00338-019-01796-7 Latest News All News News New paper shows that increasingly acidic oceans can slow coral-reef growth News 03.28.18 Technologies All Technologies Sorry, no results were found. Data All Data Sorry, no results were found.
Platz, M.C., Y. Takeshita, E. Bartels, and M.E. Arias. 2020. Evaluating the potential for autonomous measurements of net community production and calcification as a tool for monitoring coral restoration. Ecological Engineering, 158: 1–10. https://doi.org/10.1016/j.ecoleng.2020.106042
Koweek, D.A., A. Forde, R. Albright, Y. Takeshita, D.A. Mucciarone, A. Ninokawa, and K. Caldeira. 2019. Carbon isotopic fractionation in organic matter production consistent with benthic community composition across a coral reef flat. Frontiers in Marine Science, 5: 1–14. https://doi.org/10.3389/fmars.2018.00520
Cyronak, T., Y. Takeshita, T.A. Courtney, E.H. DeCarlo, B.D. Eyre, D.I. Kline, T. Martz, H. Page, N.N. Price, J. Smith, L. Stoltenberg, M. Tresguerres, and A.J. Andersson. 2020. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnology and Oceanography Letters, 5(2): 193–203. https://doi.org/10.1002/lol2.10129
Silveira, C.B., A. Luque, T.N. Roach, H. Villela, A. Barno, K. Green, B. Reyes, E. Rubio-Portillo, S. Mead, M. Hatay, M.J. Vermeij, Y. Takeshita, A. Haas, B. Bailey, and F. Rohwer. 2019. Biophysical and physiological processes causing oxygen loss from coral reefs. Elife, 8(e49114): 1–24. https://doi.org/10.7554/eLife.49114
Fox, M.D., A.L. Carter, C.B. Edwards, Y. Takeshita, M.D. Johnson, V. Petrovic, C.G. Amier, E. Sala, S.A. Sandin, and J.E. Smith. 2019. Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs, 38: 701–712. https://doi.org/10.1007/s00338-019-01796-7