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Introduction 
What we were trying to achieve and why  
Siphonophores are diverse gelatinous soft-bodied creatures which are present from the bottom to the surface of the 
Pacific Ocean. They play important ecological roles, such as predation for some species. Because of their semi-
transparent biological structures, it can be difficult to capture these species in the wild, both from an imagery  and 
specimen collection standpoint. In addition, it also is challenging to accurately make sizing measurements. Several 
traditional methods for sizing large animals are not effective for large siphonophores. For example, net collection 
destroys their delicate biological structures and CT imaging requires non-movement. Although laser line scanning and 
structured light sizing have shown potential for smaller siphonophores and other gelatinous creatures, they cannot scan 
the full body length of a large siphonophore (Daniels et al. 2023).  
 
Benefits of approach 
Photogrammetry has potential benefits: 

● Can capture overlapping biological features and piece together a full length body scan of an organism  
● Low cost and minimal hardware requirements 
● Access to free and open source software  
● Non-invasive  
● Has been rigorously tested and validated by scientific and general community  

Hence, this project sought to explore photogrammetry as a potential method for sizing large siphonophores. 
 
How do we size big siphonophores in the ocean using photogrammetry?  
The objectives of this project were the following: 
1. Investigate the pipeline and workflow of traditional photogrammetry on several selected large siphonophore datasets  
2. If there seemed to be some potential, develop a baseline photogrammetry pipeline and workflow for our imagery  
3. Produce results that could be reproducible and serve as a foundation for biological measurements (ex. Length and 
width)  
 
Overview of Traditional Photogrammetry Methodology  
Image Capture  

 
Cohrs et al, R & D (2023) 
 
Typical method for image capture 

When creating a 3D model using photogrammetry, photographs should be taken from different points (different 
heights, different angles) in the scene. This difference in apparent position is called parallax, which allows the 
photogrammetry software to calculate depth, making it possible to render a 3D model. This results in a 360 degree 
turnaround of an object of interest. 



Pipeline Steps of Photogrammetry 

After image capture, features from the collection of images are extracted. Features are essentially linkages between 
the object and the image, they are characteristic or striking parts of objects (ex. zooids). Group of pixels in images which 
look the same for different camera positions. Features are matched and images are reconstructed from the matched 
features. In this step, there is an association of homologous points based on shape and color discontinuities. Images are 
matched based on overlap of recurring patterns or features. 

 

Representation of feature extraction:  Plene, Github (2023) 

 Structure from motion is when there is the reconstruction of a 3D point cloud with 2D points. This is achieved by  
identifying a set of features, or group of pixels, in images and identifying image pairs which hold those features to infer 
scene structure (3D representation) and the internal calibration of cameras. There is Dense point cloud generation, 
where a set of points in space are created that represent reconstruction of the scene or object. Then, there is the 
calculation of distance of every pixel to internal cameras that were identified. There is Mesh construction from dense 
point clouds, or the structural geometrical build consisting of triangles and 3D representation of the object. Finally, there 
is the texturing step, which is when materials are laid over the mesh and it resembles how it appears in the original 
image capture.  

See video below for overview of the whole process described here: https://youtu.be/vh_11y-8i_A 
 
Our Pipeline Recommendations 
 
Software and Hardware  
 
The free software that was implemented for photogrammetry use was Meshroom (AliceVision | Photogrammetric 
Computer Vision Framework). Other photogrammetry softwares such as Agisoft were experienced with but ultimately 
Meshroom was selected as it was found to be much more time efficient and user friendly for the authors. However, 
there were inherent challenges as not all of the authors of this paper had access to a high quality GPU hardware in their 
computer. This prevented the advancement of data past the dense point cloud generation of photogrammetry. Hardware 
limitations were circumvented by sending semi-completed pipelines to high powered lab computers stationed at MBARI, 
which resulted in full pipeline completions. Results of object files were visualized in the free 3D creation software 
Blender (blender.org - Home of the Blender project - Free and Open 3D Creation Software).  
 
Our datasets 
 
The datasets that were utilized for the project were collected from ROVs (remotely operated vehicles) owned and 
operated by the Monterey Bay Aquarium research institute (MBARI) located in Moss Landing, California. Underwater 
visual footage of several siphonophore species (praya and mezzanine) was collected around the Monterey Bay area at 
around 200-1000m (midwater environment). The camera that was used for recording the siphonophores was an Insite 
Mini Zeus II camera. Of these videos, two were selected for analysis (see below).  
 
Video 1: https://drive.google.com/file/d/17bZZ3arW98x68f_ofhzi_aHWp2rnNKsA/view?resourcekey 
 
Video 2: https://drive.google.com/file/d/1QMA42yv4fcJI1oc_XzShxWra8aNAxXG-/view?resourcekey 



 
It is important to note that these data sets differed from images traditionally used in photogrammetry in that the subject 
matter is semi-transparent, there is not a 360 degree view of the siphonophore, and there is movement and particulate 
matter in the background, which creates noise.  
 
Best image density (seconds apart or spacing) 
 
Video 1 (first dataset) was 24 seconds of an original 6 minute video at 60 frames per second. This led to an image density 
of 1440 images. Video 2(second dataset) was a total duration of 3 minutes and 42 seconds from an original 6 minute 
video at 60 frames per second. This led to an image density of 13320.  
 
Maximum total number of images  
 
For video 1, it was found that a maximum subset of a total number of 1349 images (25 % of the original images), was 
sufficient to produce a mesh and textured result. Originally, a subset of 5000 images was used as the frames per second 
was increased to see if this was relevant to output, but this did not yield desired results in terms of density and 
composition. For video 2, a subset of around 400 images was selected. It was found that a maximum total number of 
200 images (50 % of total dataset) was sufficient to produce a decent mesh result, although texturing was not always 
successful. It can be concluded that the number of images does affect final mesh output, mainly because of the 
reconstruction aspect of the pipeline and the number of final features extracted.  
 
Imaging Culling  
 
Potentially,  image culling could be beneficial to improving the reconstruction aspect of the pipeline but it would make 
the photogrammetry process more tedious and time consuming. In addition, culling too many ‘imperfect photos’ may 
lead to poor reconstruction results in itself if there is not enough coverage of the organism. Recommended criteria for 
guiding imaging culling would be to eliminate photos with noticeably poor resolution, that are ‘blurry,’ have low contrast 
between siphonophore and the environment, and a high amount of background interference as this can lead to visibility 
constraints and impacted reconstruction.  
 
Best pipeline settings and texturing settings 
 
Base pipeline settings for decent 3D Reconstruction that could be used for measurements   
 
The base pipeline that was determined for the project was entitled “siphonophore-
dense_reconstruction_JD_25pc_eldorado.” All photogrammetry computations were done in Meshroom (version 
20232.0). The base pipeline was modified based on Meshroom’s dense reconstruction pipeline settings. This meant 
focusing on the depthmap, texturing, and meshing steps of the pipeline. The images used in this pipeline were from 
video 1. The modifications to the original pipeline provided in Meshroom were the following: 

 
In the DepthMap node, the downscale setting was lowered to 1. Successful settings around downscale allowed the 
most detail to be preserved in the mesh.  



 
In the DepthMapFilter node, the min consistent cameras and min consistent cameras bad similarity were lowered from 
default to 2, as it helps to reduce complications from blurry photos and previous issues with holes in the meshes, which 
were struggles that were faced.  

 
For meshing, the max points were augmented and reduced significantly from the default value.  This was to increase 
mesh precision. The max input point value was determined through trial and error, and eventually 50 million was 
selected as it produced a desirable amount of mesh detail and did not sacrifice the density of the point dense cloud. It 
also enabled the ability to stay within RAM limitations of the computers being utilized.  In the meshfiltering node, 
filter large triangles factor was selected and was adjusted to avoid holes and to limit large, irrelevant triangles that 
might be added to the mesh. Keep Only the Largest Mesh was selected to eliminate unconnected fragments from the 
mesh. In texturing, the downscale was changed to 1 to improve the final resolution of the mesh.  
 
Results of this Pipeline based on key elements and features of successful photogrammetry  
 
In order to achieve a good result from photogrammetry, it is essential that there is high feature extraction and strong 
matching, as there needs to be enough features that can be extracted to set up the foundation for meshes. One key 
parameter to determining these elements is high reconstruction. High reconstruction is criteria for quality image data. If 
fewer camera angles are reconstructed, it means that there are less 2D points to be transformed into a 3D point cloud 
that can be used for depth maps, meshing, and texturing.  In addition, it is desired to have clean meshes (no holes, 
distortions, or inaccuracies) and texturing success.  
 

1. Reconstruction (8 %) 

 
The reconstruction of the images could have been low due to several factors. One was that there seemed to be a 
disconnect between rendering camera metadata in meshroom. Several times, the software either defaulted to standard 
camera metadata settings or said that there was missing metadata, and research revealed that this could have an impact 



on reconstruction. This could be improved by tracking camera metadata and manually inputting the data such as focal 
length. However, decent reconstruction results were still achieved so it should not take high priority over other 
strategies.  
 
In addition, poor matching can lead to not only limited reconstruction results but failing at the meshing step. For 
example, in video 1 salps swam in front of the camera and this led to feature mapping with the salps instead of with the 
good siphonophore data. This can be improved by more specific input image filtering. For example, removing images 
that have high background or foreground interference that could interfere  with the features of the main object of 
interest, in this case the large-bodied siphonophore.  
 

 
2. Mesh: The mesh that was produced had decent resolution and was not distorted. Measurements such 

as length and width could be made after calibration.  

 
3. Texturing: Materials were laid on mesh so that visible zooids could be counted and distance 

calculated between them.  

 
Other results: Default settings but with dataset from video 2 

1. Reconstruction (100 %) 



 
2. Mesh Output 

 
The mesh output is considered to be decent because although there is a lot of noise and interference, the body of the 
siphonophore has been identified from the background (left is original unedited mesh and right is the mesh edited to 
include mainly the mesh of the siphonophore with some background). The body is being connected even though there 
are some gaps. In bad meshes, the siphonophore mesh would be disjointed and the mesh would be broken into parts 
and outputs that were not coherent.  
 

3. Texturing: did work for “siphonophore_dense_5fps_whole_JD_eldorado” and 
“siphonophore_dense_50pc_25pc_eldorado” pipelines” according to meshroom outputs. The first pipeline 
contained 400 photos of the video 2 dataset, while the second pipeline contained 71 photos of the video 2 
dataset. These pipelines differed in the number of input photos. Photos that were blurry were culled from each 
of these two pipelines.  

 
Note: * Materials from the textures did not transfer over to the visualization platforms “Meshlab” and “Blender.” Next 
steps should involve optimizing texturing settings for these pipelines as well as aligning outputs with visualization 
software for textured meshes.  
 
In order to achieve these results, the base pipeline that was determined for the project, “siphonophore-
dense_reconstruction_JD_25pc_eldorado,” was used as a guide in terms of relevant dense and sparse reconstruction 
parameters to modify and adjust for optimized reconstruction and mesh results. However, instead of the input photos 
from video 1, input photos were selected from video 2. A subset of around 43 images yield the above reconstruction 
results. This showed promise, since the previous video 1 dataset had less optimal reconstruction results. Therefore, the 
“siphonophore-dense_reconstruction_JD_25pc_eldorado” parameters were utilized for a subset of 398 (around 400) 
images in video 2 to yield the mesh output depicted above. This meshroom pipeline was entitled 
“siphonophore_dense_5fps_whole_JD_eldorado.” This pipeline produced a more optimal mesh than 
“siphonophore_dense_50pc_25pc_eldorado,” which was similar to the latter except it used only 25 % of the photos 
from the other pipeline.  
 
Failed Pipelines, Not important or what doesn’t work, avoid unless certain situations  
 
Most of the ‘failed’ pipelines which did not work focused on modifications based on Meshroom’s “Sparse 
Reconstruction Settings” or settings which focused on the front half of the traditional photogrammetry pipeline. These 
pipelines failed because they either had low reconstruction, distorted meshes with many holes and inaccuracies, or 



texturing did not work. Therefore, the pipeline settings listed below are what we would recommend be avoided in the 
future for siphonophore ROV collected images with similar conditions as our video 1.  
 

● Do not use high max points for meshing (this led to mesh inaccuracies and distortions) 

x  
● Do not select guided matching for feature extraction (supposed to aid with repetitive structures but this can 

bias results) 

 
● Do not reduce MinInputTrackLength (supposed to keep only most robust matches and remove outliers but 

this led to meshes with great gaps) 

 
● Avoid ‘hashing’ as a photometric matching method as it can exclude important data (outliers/inliers) 

 
Poor mesh results (see below) 



 
*Important Note about Reconstruction  
 
It is believed that for the video 1 dataset, reconstruction failed due to background interference and the fact that species 
of other underwater organisms traveled across the camera and blocked the siphonophore mid-video. However, it is 
believed that not all video datasets of siphonophores will have this issue. Therefore, some of our lack of success with 
these pipelines may come down to the reconstruction of the features that were inherent to our image datasets.  
 
Conclusions/Key Takeaways (new intern) 
 
From this project, photogrammetry was able to be achieved successfully under certain conditions despite significant 
differences with typical photogrammetry approaches. Unique reconstructions for large, soft-bodied underwater 
organisms were achieved. Due to the fact that this was not a comprehensive look at all possible siphonophore datasets, 
there is much future direction to be made regarding other key parameters and settings in Meshroom and for utilizing the 
photogrammetry method. Future interns can use our pipelines as a base but continue to make modifications as deemed 
necessary for different siphonophore datasets. There were vastly different results depending on when there were 
environmental changes in the clips, such as lighting and water conditions. These changes led to immediate differences in 
reconstruction, meshing, and texturing results in Meshroom.   
 
How to build off this work or dataset, Advice and information  
 
Photogrammetry parameters are sensitive to images or the environment, and that an input clip has a large impact on the 
output. It is vital that future work is focused on capturing effective input images. Dense reconstructions worked best for 
our datasets, however, for other datasets sparse reconstruction settings may have relevance. Future work should focus 
on modifications to ‘sparse reconstruction’ parameters, or steps on the front end of the pipeline, once quality image 
input has been established. Finally, image calibration and establishing camera metadata can allow for robust 
measurements to be made, as this project stepped a tad short from generating such results. In order to aid in image 
capture, ROV footage of siphonophores should strive to increase different camera angles and views of these organisms 
in the water, even though there are inherent limitations due to where these organisms are located.  
 
Alternative methods in the future, Neural radiance Fields and 3D Gaussian Splatting  
 
Neural radiance fields is the use of a fully connected neural network that can generate novel views of complex 3D scenes 
based on a partial set of 2D images. Although this process is computationally expensive and requires knowledge of deep 
learning techniques, it could be potentially used for sizing large siphonophores. Python and Cuda toolkits are important 
to compiling the code needed to run these methods. Future direction could explore this method as an alternative to 
photogrammetry. Neural Radiance fields has its advantages to traditional photogrammetry in that it uses its AI driven 
ability to generate any angle of a scene, filling in photo gaps, and blending the information of existing photos. Hence, it 
does not require as many images from every angle as photogrammetry does, and is effective for complex scenes. It is 
ideal for scenarios with incomplete data and where flexibility in viewpoint generation is required, as with large scale 
siphonophores.  
 
The data outputs were achieved through a method known as view synthesis. View synthesis involves taking a series of 
photos that show an object from multiple angles, creating a hemispheric plan of the object, and placing each image in 



the appropriate space around the object so as to predict the depth of a series of images that describe the different 
perspectives of an object. It accurately represents 3D scenes for computing image rendering.  
 
A NeRF essentially optimizes a continuous volumetric scene function. A NeRF is created from each viewpoint through 
creating a sampled set of 3D points, producing an output set of densities and colors, and accumulating these colors and 
densities into a 2D image that eventually will be used to render new views of a mesh 3D object. To generate a 3D mesh 
object file from NeRF, various pipelines and strategies can be used ( Ratkotosaona et al. 2023 (NeRFMeshing (m-
niemeyer.github.io); Mildenhall et al. 2022 (NeRF (acm.org). However, most methods are optimized for traditional 
neural radiance field and photogrammetry datasets.  A common platform for computing neural radiance fields is 
Nerfstudio(nerfstudio), and this video goes through the logistics of training a model and producing a textured 3D mesh 
object similar to the image seen below: How to Make 3D Models from NeRFs using Nerfstudio (youtube.com) 
Essentially, it is difficult to generate mesh object files from neural radiance fields alone and to do so requires additional 
computational work and pipelines.  However, The 3D object that was created from this data was created with 
RealityCapture on PC.  
 

 
 
 

 
 
Preliminary results do show promise as well with 3D Gaussian Splatting (see below). 3D Gaussian splats were used in 
addition to the data provided by the neural radiance fields. The SPLAT result shown below is entitled “Sea Creature 
Blue.” Splats use the mathematical Gaussian function to generate a point cloud visualization onto a 3D space. These 
dots, or ‘splats’ blend together with their colors to create a cohesive 3D scene. These splats were used to generate what 



appears to be the shape, form, and color of the siphonophore from video 1, with surrounding background or ‘blue 
water.’ Collectively these dots paired with the gaussian function  map out the body of the siphonophore.  
 
Essentially, Gaussian 3D Splatting uses a rasterization technique that allows real-time rendering of photorealistic scenes 
from small samples of images. It begins with estimating a point cloud from the initial set of images using the Structure 
from Motion method. Each point is then converted to a Gaussian, which is described by parameters such as position, 
covariance, color, and transparency. It has advantages to photogrammetry and neural radiance fields in that it can 
generate high quality, ultra realistic scenes with rich detail, as well as capture thin surfaces like hair. However, it has high 
VRAM usage.  
 
 
Upload these results in supersplat to view them: SuperSplat (playcanvas.com) 
Tutorial for how to effectively view these results in Supersplat: GitHub - playcanvas/super-splat: 3D Gaussian Splat 
Editor 
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